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Abstract—Computational quantum chemistry mehods such as the Hartree-Fock (HF), the density functional theory (DFT) or 
the fragment molecular orbital (FMO) require heavy computational resources. In this study they are accelerated by using 
graphics processing units (GPUs) and the vector instruction set (AVX) of latest CPU. PRISM algorithm to evaluate the 
electron repulsion integrals was vectorized to utilize AVX as much as possible. We found that this new program makes the 
Fock matrix formation in HF 2 to 3 times faster than ever before. The Coulomb and the exchange-correlation potentials in 
DFT were evalualted on GPU, result in about 4 times overall speedup. The programs developed were used to accrelerate 
FMO. We found that our new algorithm and GPU are very suitable for the calculation of the environmental electrostatic 
potential. The total computational time was reduced to about 1/3.  
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1 Introduction 

The development of the ab-initio quantum chemistry and the 
growth of computational power make the electronic structure 
calculations a useful tool for the rational drag design. The 
fragment molecular orbital method (FMO) is one of the most 
famous and widely used ab-initio methods for proteins [1]. The 
quantum calculation gives us important information beyond the 
reach of classical molecular mechanical and coarse-grained ones. 
However the inherent high computational costs of quantum 
calculations and the huge number of drag candidates urge us to 
develop much faster simulation methods. 

Traditionally the integration of more transistors on a chip was 
the mean of the performance increase of computers. As the size 
of a transistor approaches to the atomistic scale the performance 
of a computer chip will be limited by the power supply and heat 
problem, not by the number of transistors. Today and in future 
the performance per power consumption matters. A traditional 
CPU with longer SIMD (single instruction multiple data) unit 
and the streaming multiprocessors such as graphics processing 
units (GPUs) attract attention as the better performance per watt 
computing devices. In particular a GPU shows higher absolute 
performance and higher performance per watt than a traditional 
CPU by an order of magnitude today. So-called General purpose 
GPU (GPGPU) to use GPUs for other than the primary purpose 
of graphic processing is applied for various areas of 
computational science and engineering. 

It was known for a long time that the evaluation of electron 
repulsion integrals (ERIs) dominates the computational cost of 
the Hartree-Fock (HF) and the density functional theory (DFT) 
calculations. Because of its intrinsic parallelism GPUs are 
expected to be suitable to execute this most time-consuming step. 
However it should be noted that a GPU has very different 
architecture from a traditional CPU. (i) It is a massively parallel 
multi-processor. Typically more than 500 processors are 
integrated on a chip. (ii) GPU has a high bandwidth dedicated 
memory, but because of the huge number of processors the 
bandwidth per processor is lower than that of CPU. (iii) 
Currently GPU is connected to CPU via PCI express bus, which 
is a bottleneck of data transfer. Thus tasks suitable to execute on 
a GPU should have the high parallelism, high computation, and 
low data transfer. It is almost clear that the ERI evaluation 
programs for CPUs could not run on a GPU as they are. 

Previously one of the authors developed a special algorithm 
and programs to evaluate ERIs on GPUs [2,3]. It was reported 
that a GPU together with this special algorithm makes DFT 
calculation faster by an order of magnitude. Based on this work 
we developed the product-quality computation library, XA-
CUDA-QM that is a part of XA-CHEM-SUITE [4], to accelerate 
widely available ab-initio program packages, such as 
GAMESS[5]. It was shown that XA-CUDA-QM and a 
NVIDIA’s GPU successfully accelerate the evaluation of 
electrostatic potential in the FMO calculation [6]. In spite of this 
success there were two shortcomings in the previous study. (i) 
Only ERIs between s and p Gaussian basis functions were 
evaluated on GPUs. (ii) The calculation of HF exchange matrix 
in FMO was difficult accelerate by a GPU. 

The first shortcoming stems from the limited cache size on 
GPUs. Typical integral evaluation algorithms calculate many 
intermediate integrals, which are kept on cache and memory, and 
then they are joined together to make the final ERIs. The number 
of intermediate integrals rapidly increases as the angular 
momentum of basis function increases. The number of single-
precision words one can keep on GPU’s cache was about 100 per 
processor, which was lower than the number of intermediate 
integrals to evaluate ERIs between d functions. 

The second shortcoming stems from the bottleneck of data 
transfer between GPU and CPU. The HF exchange matrix 
elements calculated in FMO are rather small. Typically a 
fragment consists of 2 to 4 amino acid residues. The conventional 
self-consistent field (SCF), which calculates ERIs once and keeps 
them on an external storage for later use, is faster and hence 
preferable for this size of molecules. However because of the 
bottleneck explained above GPU would not be useful for 
conventional SCF. We also noticed that the performance of 
GAMESS program is much lower than the peak performance of a 
CPU. There should be much room for the improvements for CPU 
side code alone. 

In this study we report a method to overcome these 
shortcomings. We report the special algorithm to calculate ERIs 
on GPU up to d functions. We also report better implementation 
of ERI evaluation on a CPU. Special attention is paid to fully 
utilize the SIMD facility of Intel Sandy Bridge CPU, advanced 
vector extensions (AVX). 
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2 Method 

In this section the theoretical background and the 
implementation details of our algorithms are described. 

2.1 Vectorized PRISM algorithm using AVX 
AVX is a SIMD instruction set extension, which is installed on 

Intel Sandy Bridge processors or later and will be supported on 
AMD processors in near future. AVX utilizes the 256-bit vector 
registers, which is split into four double precision floating point 
number (64-bit), eight single precision floating point number (32-
bit) or eight single precision integer number (32-bit). Traditional 
CPUs before Intel Sandy Bridge only has the 128-bit SIMD 
operation. Hence the CPUs with AVX can process twice many 
data at once than the previous ones. 

In LCAO (linear combination of atomic orbital) 
approximation the electronic orbital is expressed as a linear 
combination of the contracted Gaussian type orbitals (GTOs). A 
basis function is the sum of the primitive GTOs 
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The computational cost to evaluate all ERIs is formally )( 4NO , 

where N is the total number of primitive GTOs. This is the most 
time-consuming step in the HF or DFT calculation.  

The basis functions that share the center and the exponent 
form a shell. ERIs are calculated for the quartet of shells one by 
one. For instance, )|( pppp  shell quartet has 3 functions 

),,( zyx ppp  for each shell, and 34=81 ERIs are calculated at 
once. This is because these 81 ERIs share the most of the 
intermediate integrals result in the drastic decrease of the 
computational cost.  

Up to now many algorithms were proposed to evaluate the 
huge number of ERIs. Among them PRISM method [7] is one of 
the fastest algorithms for various kinds of GTOs. It is widely 
adopted in quantum chemistry packages such as Gaussian 09 [8]. 
Generally the ERI evaluation and the Fock matrix formation in 
Hartree-Fock method are as follows. (i) Evaluate Boys function 
of various orders for each primitive shell quartet. (ii) Transform 
them to ERIs using recurrence relations. (iii) Multiply ERIs by 
the density matrix elements and add them to the Fock matrix 
elements.  

Boys function in the first step is a function written as  
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With a simple transformation of the variable u one notices that it 
is mathematically equivalent to the incomplete gamma function. 
Boys function is often approximated by the piecewise 
polynomial expansion, whose coefficients are determined in 
advance. The domain of T is split into many small segments and 
in each segment low-order polynomial is used to approximate the 
function. The issue is that it is not suited for SIMD parallelization, 
because the coefficient depends on the value of T, results in many 
conditional branching. Hence we split the domain into only four 
and the function is approximated 6th to 13th polynomials. The 
indirect addressing is also used to eliminate the branching. The 
second finding is that as in Ref. [2] the variable )8/exp( TS −=  
gives better polynomial expansion for Boys function. The third 
finding is the suitable direction of the recursion relation. The 
largest m we need is the total angular momentum of the shell 
quartet. For numerical stability it is generally recommended that 
one first evaluate )(TFm  of the largest m, and then transform it 
to the lower one by using the downward recursion. However we 
found that the upward recursion is more stable when T is small.  

In the process (iii) the ERIs evaluated are converted to  
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The first term of the right hand side expresses the electrostatic 
potential (J matrix), while the second term the exchange potential 
(K matrix). In this step the memory access cost to density and 
Fock matrices is greater than the floating-point operation cost, so 
we expect little merit to use vector operations.  

Various ERI evaluation algorithms differ in the way to 
transform Boys functions [0](m) to the contracted ERIs (ab|cd) in 
the second step. This step consists of successive addition and 
multiplication, which is suitable for the vector operations. 

We used the recurrence relations found by McMarchie and 
Davidson [9] to transform the Boys function to the final ERIs in 
this study. A product of two Cartesian Gaussian functions is 
rewritten as a sum of the Hermite Gaussian functions, for 
example, 
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where βαζ += , ζβα /)( xxx BAP += , and Ht is a t-th order 

Hermite polynomial. Thus all we have to know is ERIs between 
two Hermite Gaussian functions. Hermite functions of various 
orders satisfy a three-term recurrence relation and McMarchie 
and Davidson found that this recurrence relation also results in 
the recurrence relation among ERIs of various angular 
momentum. By applying these relations to intermediate ERIs in 
proper order the initial Boys function of various orders are 
transformed to the final ERIs. This is the first example of the 
modern ERI evaluation algorithms based on a recurrence 
relation. Note that some recurrence relation can be derived by 
the differentiation of ERI with respect to the center P. 

The integral transformation of PRISM consists of following 
five steps. 
Tm: Boys function is transformed to ERIs between two Hermite 
Gaussians. [0](m) ]|[ qp→  

Tbra: a bra Hermite Gaussian is transformed to the product of 
two GTOs, called the bra shell-pair. ]|[]|[ qabqp →  
Tket: a ket Hermite Gaussian is transformed to the product of two 
GTOs. ]|[]|[ cdabqab →  

Cbra: contraction of bra shell-pair. ]|(]|[ cdabcdab →  

Cket: contraction of ket shell-pair. )|(]|( cdabcdab →  
We can apply these operations in various orders. The 

important finding by Gill and co-workers is that the best order 
which minimizes the computational cost depends on the 
contraction length and the angular momentum of GTOs. The 
order of these operations are called ‘paths’, and there are 40 paths. 
The attractive feature of PRISM is that the best path that 
minimizes the computational cost is selected for a given 
contraction length and the angular momentum. 

As an example, C++-like pseudo-code to evaluate (ps|ss) ERIs 
by Tm, Cbra, Tket, Cket, Tbra path is shown below.  
 
template<class T> FunctionPSSS () { 
  T (b'p' 0|ss) = 0 
  T (p' 1x|ss) = 0 
  T (p' 1y|ss) = 0 
  T (p' 1z|ss) = 0 
 
  for( ket contranction ) { 
    T (b'p' 0|0] = 0 
    T (p' 1x|0] = 0 
    T (p' 1y|0] = 0 
    T (p' 1z|0] = 0 
 
    for( bra contranction ) { 
      Call function to make )1()0( ]0[,]0[  
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      // Tm 
      T [1x|0] = Rx * )1(]0[  
      T [1y|0] = Ry * )1(]0[  
      T [1z|0] = Rz * )1(]0[  
 
      // Cbra 
      T [b'p' 0|0] = Be * Pe *  )0(]0[  
      T [p' 1x|0] = Pe * [1x|0] 
      T [p' 1y|0] = Pe * [1y|0] 
      T [p' 1z|0] = Pe * [1z|0] 
      (b'p' 0|0] += [b'p' 0|0] 
      (p' 1x|0] += [p' 1x|0] 
      (p' 1y|0] += [p' 1y|0] 
      (p' 1z|0] += [p' 1z|0] 
    } 
 
    // Tket 
    T (b'p' 0|ss] = (b'p' 0|0) 
    T (p' 1x|ss] = (p' 1x|0) 
    T (p' 1y|ss] = (p' 1y|0) 
    T (p' 1z|ss] = (p' 1z|0] 
 
    // Cket 
    (b'p' 0|ss) += (b'p' 0|ss] 
    (p' 1x|ss) += (p' 1x|ss] 
    (p' 1y|ss) += (p' 1y|ss] 
    (p' 1z|ss) += (p' 1z|ss] 
  } 
 
  // Tbra 
  T (pxs|ss) = (p' 1x|ss) + BAx * (b'p' 0|ss) 
  T (pys|ss) = (p' 1y|ss) + BAy * (b'p' 0|ss) 
  T (pzs|ss) = (p' 1z|ss) + BAz * (b'p' 0|ss) 
} 
template FunctionPSSS<double>(); 
template FunctionPSSS<double4>(); 
template FunctionPSSS<float8>(); 
 

The variables Rx, Ry, Rz, Be, Pe, BAx, BAy, and BAz are 
determined by the primitive shell quartets. Generally the 
operations above only include additions and multiplications, such 
as 

)(*)(*)( BIntegralbAIntegralaCIntegral += . 

Hence exactly the same operations are applied to the shell 
quartets within the same shell type (i.e., angular momentum) and 
the same contraction lengths. This process is very suited for 
SIMD parallelization. 

The main difference between our implementation of PRISM 
and that in Gaussian program is the followings. In Gaussian all 
the computational operations to transform Boys function to the 
final ERIs are encoded in an integer array, called a ‘driver’. The 
drivers needed are rebuilt at runtime based on the contraction 
length and the angular momentum. It also contains the memory 
pointers (or array indices) of all the variables (such as A, B, C, a, 
and b) in the recurrence relations. It directs the generic 
contraction and transformation routines the mathematical 
operations. The use of a driver makes the ERI evaluation 
program very simple: it is not necessary to generate and compile 
the source code for many shell types and paths.  

The disadvantage of this approach is the degradation of 
performance because a compiler cannot know the sequence of the 
recurrence relations and hence it cannot optimise the program. 
Hence in this study source codes for all the paths are explicitly 
generated. The total number of functions necessary is very large, 
which is a shortcoming of our method. Suppose we use s, p, sp, 
and d type GTOs. Taking the permutation symmetry of ERI into 
account there are 55 patterns of angular momentum of four shells. 
As mentioned previously there are 40 distinct PRISM paths. 
Hence we have to make 2200 functions in total. In addition the 
source code of a function is sometimes lengthy: the path CCTTT 
for (dd|dd) has more than 17,000 lines. The file size of the library 

containing all functions is over 370 mega bytes. It does not look 
smart but it does not cause any serious problem thanks to a high-
capacity HDD and a memory.  

Another difference is the way of vectorization. Gaussian 
program makes batches of several dozen or hundreds of shell 
quartets to be applied recurrence relation at once. This technique 
was best suited for the ancient vector processors. It would help 
the automatic parallelization for recent CPUs. However we 
suspect that it causes the level one (L1) cash misses. In our 
program since eight shell quartets are handled at most cash 
misses would be negligible.  

To deal with AVX easily, the class ‘double4’, which has a 
member variable of __m256d type, is defined as 
 
class double4 
{ 
public: 
  double4& operator=(double d) { 
    m_d = _mm256_set1_pd(d); 
    return *this; 
  } 
 
  double4 operator+(const double4& dd) { 
    return double4( _mm256_add_pd( m_d, dd.m_d ) ); 
  } 
 
  // ... define other operators 
 
  __m256d m_d; 
}; 
 

The overload of the assignment and addition operators allows 
us to do without the intrinsic functions (_mm256_set1_pd, 
_mm256_add_pd) explicitly. The template function of C++ 
language shown in the pseudo-code is also useful to make the 
source code simple. Functions of the same instruction for double, 
double4 and float8 are generated once when we compile the code.  

The criterion to select the appropriate path for a given type and 
the contraction length of shell quartet is an important issue. The 
widespread method is to select the path which minimizes the 
theoretical floating point operation (FLOP) count or the memory 
copy operation. However as practically better solution we 
measured the computational time of all paths and selected the 
path that minimizes it, then we recompile the code. Although 
these paths might be sub-optimum for a certain computer that has 
different architecture from ours, it is not likely to make a big 
difference. We can recompile the library if necessary when we 
install it. The actual performance difference between various 
CPUs is an open question.  

2.2 J Matrix Engine on GPU 

The calculation method of the Coulomb operator, called the J 
matrix, on GPU is based on Ref. [2] and we improved it in this 
study. The calculation of this matrix is the most time-consuming 
step in DFT when one uses pure functionals. ERIs are used only 
for J matrix in this case. In HF or DFT with hybrid functional the 
evaluation of the Hartree-Fock exchange potential, called K 
matrix is the most time-consuming step. Traditionally one first 
calculates all the ERIs and stores them on an external storage if 
necessary, and then they are transformed to the J and K matrices. 
However the previous study by Ufimtsev and Martinez [10] 
revealed that the separate calculation of both matrices is 
preferable to minimize the memory access. Hence we calculate J 
matrix separately, which enables us to use much faster J matrix 
engine [11] algorithm. The J matrix is the sum of the products of 
ERIs between Hermite Gaussian functions and the density matrix 
elements.  
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The transformation of Dq and Jab can be done before and after 
the summation over shell pair q, so that the cost of these steps are 
O(N2). Therefore the evaluation of Jp via (p|q) dominates. As 
explained in the previous section this ERI can be evaluated by 
the three PRISM processes Tm, Cbra, and Cket. Since there is no 
need to take Tbra and Tket transformation, little advantages are 
observed to take contraction at former step even for the long 
contraction length. This is in sharp contrast to the K matrix 
evaluation. Considering the fact that GPUs have a limited shared 
memory and registers, we executed this summation in terms of 
primitive shells. 

In Ref. [2] the primitive ERIs [p|q] were calculated by Gauss-
Rys quadrature to reduce the number of registers used. In this 
paper we adopted the McMarchie-Davidson recurrence relation 
to reduce FLOP count. The change of the preference reflects the 
change of the recent GPUs (Fermi core, Compute Capability 2.0 
or later), in which more registers are available.  

The important technique is to sort the shell pairs. It is widely 
accepted that we can skip the evaluation of very small integrals 
(less than 10-10 a.u. cut-off). So one first evaluates the upper 
bound of ERI by using the Schwartz inequality, 

cutoffqqppDqpD qq ≤≤ ]|][|[]|[  

and calculates ERI which passed it. This reasonable screening 
causes the serious parallel efficiency problem on GPU. Since 
more than 32 threads run concurrently in SIMD fashion on GPU 
to evaluate their respective ERIs, all the threads should run the 
same program even when only one ERI passes the cut-off test. 
The rest threads calculate ERIs which are essentially zero. To 
avoid such waste we pack the significant shell quartets densely. 

We sorted shell pairs p as decreasing order of ]|[ pp , and 

sorted q as decreasing order of ]|[ qqDq . It also enables for 

the threads in the same block to exit the loops over p and q as 
soon as possible all together. However, this method failed to 
utilize the integral symmetry ]|[]|[ pqqp = . The computational 
cost is thus twice of the ideal one. 

In Ref. [2] ERIs whose upper bound were greater than the 
cut-off above and also were smaller than the second cut-off were 
evaluated on GPU with single precision. Other ERIs which were 
greater than the second cut-off were evaluated on CPU with 
double precision. Although the number of ERIs evaluated on 
CPU is only about 1/10 of that on GPU, we found that the 
computational time on CPU is sometimes longer than that on 
GPU, because the performance of GPU is much superior. Since 
the double precision operations are supported on recent 
NVIDIA’s GPUs (Compute Capability 1.3 or later), we 
developed the double precision version of the GPU kernels and 
used it for larger ERIs. 

2.3 ESP Calculation in FMO 

FMO is an efficient method to calculate the electronic 
structure of large proteins with practical computational cost. 
This section describes the acceleration of FMO by GPU. A 
molecule to solve is split into many fragments in FMO, and the 
wave function of a fragment is determined by the standard ab-
initio methods, such as HF. The wave function of a fragment is 
determined under the environmental electrostatic potential 
(ESP) of the neighbour fragments. This is a self-consistent 
problem, called the self-consistent charge (SCC), and the 
calculations are repeated until wave functions of all the 
fragments converge. At each SCC iteration we need ESP 
generated by all the neighbour fragments. The computational 

cost for ESP is higher than that of SCF calculation of each 
fragment: it typically occupies 70-90% of the total time. 
Therefore, the ESP is the first candidate to accelerate FMO. J 
matrix engine described above is suitable for it because ESP is 
just a Coulomb potential from the environment.  

A particularity of ESP is that the integral symmetry of ERI 
]|[]|[ pqqp =  cannot be used practically even when ERIs are 

evaluated on CPUs. This is because a bra shell-pair belongs to 
the fragment to be calculated and a ket belongs to one of the 
neighbour fragments. If one wants to use integral symmetry, the 
ERIs on a CPU should be transferred to other CPUs via rather 
slow networks. Because of it the disadvantage of the symmetry 
in GPU kernels does not matter. 

2.4 Evaluation of Exchange Correlation Matrix in DFT  

The calculation method for the exchange correlation matrix 
on GPU is mainly based on Ref. [3]. Assuming closed shell for 
simplicity the exchange-correlation energy functional 

))(),(( rr
rr γρεε = is expressed as a function of the electron 

density )(r
rρ  and the gradient of it, )()()( rrr

rrr ρργ ∇⋅∇= . The 
total exchange correlation energy is  
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 and wi are quadrature grid points and weights, 

respectively. The exchange correlation matrix are expressed in 
terms of ε and the first derivative of ε by ρ and γ as follows. 
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The evaluation steps of exchange correlation matrix are (i) to 
determine the value of ρ and γ on the grid points, (ii) to 
determine the value of ρε ∂∂ /  and γε ∂∂ / from the value of ρ 

and γ on the grid points, and (iii) to evaluate the elements of 
exchange correlation matrix from ρε ∂∂ /  and γε ∂∂ / . The 

calculation cost for (ii) is an order of the number of grid points 
(NG), and that for (i) and (iii) is about NG×NB, where NB is the 
number of basis functions. So we accelerated steps (i) and (iii) 
by GPU. The step (ii) was executed on CPU and the data is 
transferred from the GPU’s device memory to the host memory. 

3 Results and Discussion 

The algorithms explained in the previous section were 
implemented to make the libraries, XA-CUDA-QM and XA-
AVX-QM. The accuracy and the performance of the product 
were measured by applying them to several molecules. The ab-
initio program package of GAMESS 2010R3 was modified to 
join the libraries developed in this study. They are expected to 
replace the most time-consuming part of HF and DFT 
calculations, without changing the results. We compare the 
energy and some properties calculated with those of the original 
GAMESS.  

The specifications of a computer used are: Intel Core i5 2500 
running at 3.30GHz (4 cores), a GTX580 GPU, and 8 GB DDR3 
memory. NVIDIA CUDA 3.0, Intel Composer XE (12.0) 
compiler and MKL 10.3 library are used. 

3.1 Acceleration of Hartree-Fock calculation using the 
AVX library 

The molecules calculated were valinomycin (molecular mass: 
1111) and paclitaxel (molecular mass: 854) with 3-21G and 6-
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31G basis set. Table 1 shows the timing information and the 
calculated HF energy. 

Table 1. Computational times and the Hartree-Fock total energies of 
molecules, paclitaxel and valinomycin.  

 Time [sec] Total energy [a.u.] 

paclitaxel, 3-21G 

GAMESS 184.048 -2895.7814570171 

this work 78.271 -2895.7814570169 

speedup/error x 2.35 0.0000000002 

paclitaxel, 6-31G 

GAMESS 324.386 -2910.6633340322 

this work 153.632 -2910.6633340179 

speedup/error x 2.11 0.0000000157 

valinomycin, 3-21G 

GAMESS 476.829 -3750.9205018138 

this work 155.481 -3750.9205017267 

speedup/error x 3.07 0.0000000871 

valinomycin, 6-31G 

GAMESS 752.839 -3770.0595984968 

this work 323.098 -3770.0595984236 

speedup/error x 2.33 0.0000000732 

 
As shown in Table 1 the HF calculations were accelerated by a 

factor of 2.1-3.1 times compared to the original ones. More than 
95% of total computational time was used to evaluate ERIs and J 
and K matrices in the original GAMESS program. The energies 
calculated were the same in the accuracy of 710− a.u. We found 
that the acceleration ratio for 3-21G basis is higher than that of 6-
31G basis. The difference of the ERI algorithm would partly 
explain it. The Pople-Hehre algorithm [12] used in GAMESS is 
suitable for highly contracted basis because the contraction is 
performed at an early stage of ERI transformation. Another 
plausible reason is the inefficiency of the current AVX library to 
evaluate the Boys function. The fraction of this cost increases as 
the contraction length increases, because they are calculated for 
all primitive shell quartets. The current library evaluates the Boys 
function unnecessarily more accurately than required. The 
optimization of this part is in underway. 

3.2 Acceleration of DFT calculation using the GPU 
library 

The molecules calculated were the same as the previous 
section: valinomycin and paclitaxel with 3-21G and 6-31G basis 
set. The so-called PW91 functional proposed by Pedrew and 
Wang [13] was used. Table 2 summarizes the timing information 
and the total energies of DFT calculation.  

DFT calculation by GAMESS starts to solve HF. After the 
convergence of HF to some loose threshold it switches to the real 
DFT calculation. Hence the results of the DFT calculations 
include an effect of the AVX library. As the DFT calculation 
converges GAMESS uses finer numerical grid to evaluate the 
exchange-correlation potential. As shown in Table 2, the DFT 
calculations were accelerated by a factor of 3.6-4.0 compared to 
the original GAMESS. Less influence of basis sets was observed 
than in Table 1. The energy differences between the present and 
the original GAMESS are about 5-6×10-3 a.u., which are much 
larger than in Table 1. We suspect the origin of this discrepancy 
as the implementation issue. Some parameters in the exchage-
corelation functionals in GAMESS seem diferent from ours and 
those in Gaussian 09. In fact, the total energy of paclitaxel (3-
21G) calculated by Gaussian 09 program was -2912.45580647 
a.u. It matches only in the accuracy of 4×10-3 a.u. to the original 
GAMESS. On the other hand there is no reason for the 
discrepancy of the HF energy except for the numerical round-off 
error, Schwartz cut-off of ERIs, and the polynomial 

approximation of the Boys function. Taking these facts into 
account we can say that the right value of energy was calculated. 

Table 2. Computational times and the DFT total energies of molecules, 
paclitaxel and valinomycin.  

 time [sec] Total energy [a.u.] 

paclitaxel, 3-21G 

GAMESS 1014.439 -2912.4520720717 

this work 279.097 -2912.4570178922 

speedup/error x 3.63 0.0049458205 

paclitaxel, 6-31G 

GAMESS 1307.251 -2927.6946871371 

this work 344.638 -2927.6996862771 

speedup/error x 3.79 0.0049991400 

valinomycin, 3-21G 

GAMESS 2303.663 -3772.7680853481 

this work 635.573 -3772.7744935064 

speedup/error x 3.62 0.0064081483 

valinomycin, 6-31G 

GAMESS 3190.326 -3792.3719433246 

this work 795.796 -3792.3784019260 

speedup/error x 4.01 0.0064586014 

 
We also examine the performance in detail of the most time 

consuming steps. Table 3 shows the results of valinomycin with 
3-21G basis. 

Table 3. The details of computational time for the DFT calculation of 
valinomycin (3-21G basis). [unit:sec] 

 GAMESS this work speedup 

HF Fock Matrix  251.950 81.424 x 3.09 

DFT J matrix  620.071 2.091 x 296.54 

DFT exchange-
correlation matrix  

1059.445 173.544 x 6.10 

Total 2303.663 635.573 x 3.62 

 
Fock matrix (J and K matrices) formation in HF method was 

accelerated 3.1 times by using our PRISM method parallelized 
with AVX. Since this step is executed on the same CPU in either 
method speedup comes from purely the software improvement. J 
matrix formation in DFT was accelerated 297 times by using the 
GPU package. This is a surprisingly large number, because the 
theoretical peak performance of GPU we used is only about 10 
times compared to CPU. Note that GAMESS does not use J 
matrix engine and ERIs are explicitly evaluated. This difference 
would partly explain the results, because generally J engine is 
twice faster than the usual ERI algorithms. However the most 
plausible reason is the inefficiency or the bad implementation of 
the original GAMESS. Our result implies that there is still much 
room for improvement in GAMESS.  

The evaluation of exchange-correlation matrix was accelerated 
6.1 times by using the GPU. We found that the generation of the 
quadrature grid and the weights was another bottleneck of the 
computation. It is a next candidate to accelerate by GPU. 

3.3 Acceleration of FMO by using GPU and AVX 
libraries 

The libraries developed (XA-CUDA-QM and XA-AVX-QM) 
were used to accelerate FMO. We choose as the test molecule the 
complex of the protease domain and the N-terminal module of 
the coagulation factor Xa and the inhibitor [14]. The molecule 
was split into 284 fragments. The basis set used was 6-31G basis 
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set. Table 4 shows the timing information and the calculated 
energy of FMO method. 

 
Fig. 1 Structure of the molecular complex calculated in FMO [15]. 

Table 4. Computational time and the FMO total energy of the molecular 
complex calculated 

 Time [sec] Total energy [a.u.] 

GAMESS 134036.8 -118004.4295238 

this work 40264.9 -118004.4295004 

speedup/error x 3.33 0.0000234 

 
The error of the total energy was 2.4×10-5 a.u. The original 

calculation time of 134036.8 seconds by GAMESS was reduced 
to 40264.9 seconds. By using AVX and GPU we achieved more 
than three times acceleration. Table 5 compares the dipole 
moments of the first ten fragments. 

Table 5. The x component of the dipole moment in atomic unit of each 
residue calculated with FMO2 approximation. 

Residue GAMESS this work error 

1(ILE) -58.81871  -58.81871 0.00000 

2(VAL) 4.97865  4.97865 0.00000 

3(GLY) -2.94988  -2.94988 0.00000 

4(GLY) 0.70733  0.70733 0.00000 

5(GLN) 10.65749  10.65749 0.00000 

6(GLU) 46.78936 46.78936 0.00000 

7(CYS) -4.34418  -4.34418 0.00000 

8(LYS) -27.77172  -27.77172 0.00000 

9(ASP) 2.95062  2.95062 0.00000 

 
As shown in it the dipole moment of each residue was 

essentially the same: the errors were within 10-5 a.u. In short we 
succeeded in the acceleration of whole FMO calculation without 
any degradation of results.  

We examine the computational time of FMO in detail. Table 6 
compares the time for the generation of ESP and SCF calculation 
of all the fragments. As shown the time-consuming step of the 
original program is the evaluation of ESP, which covers more 
than 70% of total time. We successfully accelerated it by using J 
matrix algorithm on GPU previously described: we achieved 13 
times speedup. This acceleration ratio is much smaller than that 
of J matrix calculation for larger molecules described in previous 
section. One reason is the small size of fragments. The fraction of 
the overhead of GPU calculation, such as host-device data 
transfer or transformation of the data structures, increases as the 
size of molecule decreases. Another explanation is the bad 
implementation of the original GAMESS. We suspect the cache 
misses, which explains the rapid decay of the performance for 
large molecules.  

The rest 30% of computational time is attributed to the regular 
SCF calculations of small but many fragments. The direct SCF 

method is unfavourable for them because most of the fragments 
are so small that we can store all ERIs in a host memory. As 
shown in Table 3 the SCF part is only slightly accelerated. Our 
current AVX library has the limitation that the fine-tuned AVX 
library is used only for the direct SCF algorithm. On the other 
hand in the FMO calculation most of the fragments were so small 
that all the ERIs are stored in the memory and the Fock matrix is 
calculated by the conventional SCF algorithm, which explains 
the marginal improvement of this part. Note that it is rather 
straightforward to use AVX library for conventional SCF. We 
expect that it will accelerate regular SCF. 

Table 6. Computational time to generate the environmental electrostatic 
potential (ESP) and to solve SCF for every fragment in FMO calculation 

[unit:sec].  

 ESP SCF Total 

GAMESS 99554.2 14490.7 134036.8 

this work 7721.2 12218.5 40264.9 

speedup x 12.89 x 1.186 x 3.33 

4 Conclusion 

In conclusion, the software libraries (XA-CUDA-QM, XA-
AVX-QM) developed in this study replace the most time-
consuming steps in the Hartree-Fock and DFT calculations. They 
successfully made the quantum chemical calculation by 
GAMESS 2.1-3.1 times faster for Hartree-Fock, 3.6-4.0 times for 
DFT, and 3.3 times for FMO. AVX were found to be useful to 
accelerate the ERI evaluation on CPUs for Hartree-Fock method. 
The total energy and the dipole moments in FMO calculation 
were found to be essentially the same. GPU made the calculation 
of environmental electrostatic potential 13 times faster than 
multi-core CPUs. 
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